

Full Syllabus

Course Title		
ADVANCED QUANTUM FIELD THEORY IN CONDENSED MATTER		
Lecturer		
Eran Sela		
Semester		
2		
Course requirements		
Submission of exercises, short presentation in the last week, final exam.		
Final grade components		
Exercises 10%, presentation 20%, exam 70%		
Course schedule		
Class no. / Date	Subject and Requirements (assignments, reading materials, tasks, etc.)	
1	From particles to fields, Classical harmonic chain: phonons, Quantum chain	
2	Second quantization: Applications, Electrons in a periodic potential, Interaction effects in the tight-binding system, Interaction effects in the tight-binding system, Hubbard model, Heisenberg Hamiltonian	
3	Interacting fermions in one dimension, Quantum spin chains, Anderson impurity Hamiltonian	
4	Feynman path integral, Construction of the path integral, Semiclassics from the path integral, Applications, Path integral for spin	
5	Functional field integral, Coherent states, Field integral for the quantum partition function, Matsubara frequencies	
6	Field theoretical bosonization	
7	Symmetry breaking, mean field theory, long range order, effective theory and Goldstone modes. Superfluidity versus superconductivity. Anderson-Higgs mechanism	
8	Low dimensional systems, Mermin-Wagner theorem, the xy model, Kosterlitz-Thouless transition.	
9	Kondo effect and the renormalization group, strong coupling theory, Local Fermi liquid theory, multichannel Kondo effect.	
10	Exact solution of Luttinger model, Sine-Gordon model, renormalization group analysis, semiclassical interpretation of strong coupling theory.	
11	Quantum Magnetism: Jordan-Wigner transformation, spin chains, Lieb-Shultz- Mattis theorem, the Haldane gap.	

Full Syllabus

12	Topological phases and Quantum Hall effect: Topological field theory, Chern-Simons theory Berry phase,topological band insulators, topological superconductors, Majorana fermions	
13	Aharonov-Bohm effect and fractional statistics in 2D, quasiparticle excitations in fractional quantum Hall effect, ground state degeneracy, quantum gauge theories. Topological terms in spin systems	
Required course reading		
Optional course reading		
Quantum Field Theory of Many Body Systems: Xiao-Gang Wen Condensed Matter Field theory: Alexander Altland and Ben Simons Quantum Physics in One dimension: Tierry Giamarchy		
Comments		