

Course Title

Theory of functions of a complex variable 2

Lecturer

Oleg Ivrii

Semester

Spring

Course requirements

Theory of functions of a complex variable 1

Final grade components

Exam: 80%, Homework: 20%

Course schedule

Week	Subject and Requirements (assignments, reading materials, tasks, etc.)
1	Topology of uniform convergence on compact subsets
2-3	Infinite sums and infinite products
4	Gamma and zeta functions
5	Interpolation: the theorems of Mittag-Leffler and Weierstrass
6-7	The Riemann mapping theorem. Schwarz-Christoffel formula.
8	Riemann surfaces defined by algebraic equations. Projective space.
9-10	Uniformization of doubly connected domains and complex tori. Weierstrass p-function.
11-12	Modular functions. Picard's little theorem.
13	Circle packing

Required course reading

"Complex analysis" by Donald E. Marshall