

Full Syllabus

Course Title	
Introduction to Machine Learning	
Lecturer	
Dr. Nadav Cohen	
Semester	
Fall	
Course requirements	
See catalog	
Final grade components	
20% homework assignments, 80% final exam	
Course schedule	
Class no. / Date	Subject and Requirements (assignments, reading materials, tasks, etc.)
1	Introduction to the course and to machine learning
2	Probably-approximately-correct (PAC) learning model
3	Generalization bounds, VC dimension, bias-variance tradeoff, model selection
4	Regularization, optimization
5	Support vector machines (SVM)
6	Kernels
7	Multi-class learning, deep learning
8	Decision trees
9	Boosting and ensemble methods
10	Regression, online learning
11	Principal component analysis (PCA), clustering, generative models
12	Gaussian mixture model (GMM) and expectation maximization (EM)
13	Summary, supplements,
Required course reading	

Optional course reading

 $https://www.cs.huji.ac.il/\circshais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf$

Comments