

Full Syllabus

Course Title	
Algorithmic Roboti	cs and Motion Planning
Lecturer	
Prof. Dan Halperin	(lecture) and Dr. Michal Kleinbort (recitation)
Semester	
A: Fall 2020-2021	
Course requireme	ents
-	ed toward graduate students in CS. There are no formal prerequisites but knowledge of ructures, and software 1 is assumed.
Final grade comp	onents
50% homework+50 or if you give a min	0% final project; ii-talk then 40% homework+10% mini-talk+50% final project
Course schedule	
Class no. / Date	Subject and Requirements (assignments, reading materials, tasks, etc.)
1	Introduction Part I; the configuration space (C-space) of a disc moving among discs-combinatorial analysis
2	Introduction Part II; C-space of robot systems with 2 degrees of freedom (dofs), translational motion planning and Minkowski sums
3	Motion planning and geometric arrangements, general results
4	Piano Movers I, translating and rotating a segment in the plane
5	Basics of exact motion planning: Wrapping up
6	Sampling based motion planning I: PRM; Collision detection
7	Sampling based motion planning II: Single query and the RRT family
8	Path quality: distance, clearance, multi objective optimization, HGraphs
9	Exact motion planning for large fleets of robots I: the unlabeled case
10	Exact motion planning for large fleets of robots II: the labeled case and revolving areas
11	Sampling based planners for multi-robot motion planning (MRMP) and the tensor product: dRRT, dRRT*
12	Near-Optimal MRMP with Finite Sampling
13	Multi agent path finding (MAPF)

Full Syllabus

Optional course reading

See the course's website for a bibliography

Comments

In addition to the lectures above there will be several guest lectures as well as mini talks by students on diverse topics in robotics