

Full Syllabus

Course Title	
Deep learning	
Lecturer	
Raja Giryes	
Semester	
Winter	
Course requiremen	nts
The course Introduct required.	ion to machine learning or computer vision. Python programing capabilities are also
Final grade compo	nents
20% homework, 80%	s final project
Course schedule	
Class no. / Date	Subject and Requirements (assignments, reading materials, tasks, etc.)
1	Introduction to deep learning, brief survey of the field and basic structures of neural networks
2	Neural networks raining, loss functions, the backpropagation algorithm
3	Acceleration techniques and optimizers, data augmentation and regularization methods
4	Different network structures. Object detection methods
5	Semantic segmentation approaches
6	Neural networks for temporal data, using neural networks for natural language processing
7	Techniques for natural language processing, attention methods, transformers
8	Generative adversarial networks (GANs)
9	Neural networks for image processing and computational imaging
10	Neural architecture search, domain adaptation, adversarial attacks
11	Training neural networks for 3D data
12	Unsupervised and self-supervised learning, auto-encoders
13	Few-shot learning, online and incremental learning
Required course re	eading
Self-learning of pytorch (<u>https://www.udacity.com/course/deep-learning-pytorchud188)</u>	
Optional course reading	
Comments	

Topics might changes a bit throughout the semester