

Full Syllabus

Course Title	Computational Models in Cognition
Lecturer	Marius Usher
Semester	

Course requirements: i) cognitive psychology, including memory, visual attention. ii) Some computational background (basic maths, or programming, Matlab, etc).

Final grade components: course work (805) + 3 exercises (20%). Article presentation (5 bonus points; voluntary contribution)

Course schedule		
Class no. / Date	Subject and Requirements (assignments, reading materials, tasks, etc.)	
1	Introduction to modeling: rationale, domains and examples. Neurons and	
	networks. Firing-rates and spikes. Integrate-and-fire model. The neural code; Cell	
	assemblies, the Hebbian-framework.	
	Practical-1: Introduction to Matlab; Using Matlab to plotting RT-distributions and	
	calculate accuracy in experimental tasks.	
2	Connectionism (PDP framework); Localistic vs distributed representations;	
	Learning and in neural networks. Perceptron and Back-Probagation; Semantic	
	knowledge; Generalisation	
3	From Signal-detection to sequential sampling models	
	Practical-2: Introduction to model simulations Race and Diffusion	
4	Models of choice-RT(2) : race and diffusion models (optimality).	
5	Models of choice-RT (3): Leaky-Competing-Accumulators. Independent vs	
	Competition models	
	Practical3 – LCA model	
6	Models of choice-RT-4: Temporal-weighting of evidence (LCA vs Diffusion)	
7	Madeling value based desiring (right shoise bigges, and attentional selection)	
/	Would hig value based decisions (fisk, choice blases, and attentional selection)	
	Practical4 : Fitting accuracy and RT with the diffusion model	
8	Modeling decision between food items based on eye-movements (Attention	
	Drift Diffusion);	
9	Models of Attention-1: salience, pop-out and Visual Search; Figure-ground.	
	Practical-5: Value based decision and selective integration model	

Full Syllabus

10	Models of Attentional-2. Cueing, Stroop, the flanker test; attentional control, task-conflict.
11	Models of Memory: Activation memory; the activation buffer, modeling dissociation between STM/LTM. Practical-6: The Stroop model
12	Modelling decision confidence, sequential control.
Required course reading	

Research articles that will be uploaded on the moodle website

Optional course reading

Comments