חזרה

סילבוס

מספר קורס 0512-4264-01
שם הקורס מבוא ללמידת מכונה
יחידה אקדמית הפקולטה להנדסה ע"ש איבי ואלדר פליישמן -
מגמה להנדסת חשמל
מרצה פרופ' דוד בורשטיןצרו קשר
צור קשר דוא"ל: burstyn@tau.ac.il
שעות קבלה בתאום מראשבניין: וולפסון חשמל , חדר: 134
אופן ההוראה שיעור
שעות סמסטריאליות 3
סמסטר א' תשפ"א
יום ד
שעות 08:00-10:00
בניין
חדר
סמסטר א' תשפ"א
יום ה
שעות 08:00-09:00
בניין
חדר
אין סילבוס

תוכן הקורס ומטרתו

חוקי החלטה ביסיאניים. פונקציות דיסקרימינציה.

שערוך פרמטרים על פי שיטת הסבירות המרבית (maximum likelihood) ועל פי השיטה הביסיאנית.

מזהים לא פרמטריים. שערוך לא פרמטרי של צפיפות פילוג. חלונות Parzen. ניתוח התכנסות. סווג באמצעות שיטת השכנים הקרובים (nearest neighbors).

מודלים ליניאריים לרגרסיה ולזיהוי (classification), ריבועים פחותים, רגולריזציה, lasso, ridge regression, logistic regression.

הפרדה עם שוליים מירביים בין קבוצות (maximum margin classifiers), support vector machines, פונקציות גרעין.

רשתות עצביות (neural networks), למידה עמוקה (deep learning). יישומים.

לימוד לא מונחה. שיטות הקבצה. אלגוריתם K ממוצעים.

אלגוריתם expectation maximization (EM) . שימוש ב- EM לאמידת הפרמטרים של מודל עירובים (mixtures).

מודלים מרקוביים ומודלים מרקוביים חבויים (HMM). זיהוי ואמידת פרמטרי HMM. יישומים למידול שפה ולזיהוי אוטומטי של דיבור.

בחירת אופנים לייצוג ולהבחנה בין קבוצות, principal components analysis (PCA).





לסילבוס המפורט
מטלות הקורס

בחינה סופית

ייתכנו מטלות נוספות
רשימת המטלות המלאה תופיע בסילבוס המפורט של הקורס.

קורסי קדם נדרשיםאותות אקראיים ורעש (05123632)


tau logohourglass00:00